热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

本文|更多_内网穿透你真的了解吗?

篇首语:本文由编程笔记#小编为大家整理,主要介绍了内网穿透你真的了解吗?相关的知识,希望对你有一定的参考价值。前言内网穿透

篇首语:本文由编程笔记#小编为大家整理,主要介绍了内网穿透你真的了解吗?相关的知识,希望对你有一定的参考价值。



前言

内网穿透作为程序员常用的调试手段之一,我们可以通过在个人电脑上运行花生壳或者 frp 等方式,让他人访问我们本地启动的服务,而且这种访问可以不受局域网的限制,当我们使用ngrok,frp等开源框架时,你是否有好奇过它神奇的作用?明明没有将服务部署到服务器,程序员们究竟是怎么通过这种特殊方式让所有人访问自己的主机的?本文将以frp开源框架为例,介绍内网穿透的原理。


公网 IP 与内网 IP

能否在公网中访问服务器的决定性因素:公网 IP


IP 地址的作用

众所周知, IP 地址是每一位使用互联网的网民都会拥有的标识, IP 地址在互联网中起到的作用是定位,通过 IP 地址我们可以精确的定位到所需资源所在的服务器,这是对于一般用户来讲的,而对于程序员而言,我们需要的则是让用户通过 IP 地址定位到我们部署的资源,既然每个互联网用户都拥有 IP 地址,为什么用户无法直接访问部署在个人PC上的服务呢?

事实上, IP 地址分为两种:公网 IP 和内网 IP

内网 IP : 内网 IP 是用户在使用局域网时,由局域网的网关所分配的 IP 地址,每一个内网 IP 实际上都可以映射到当前所在局域网网关的某一端口( IPV4 地址通过 NAT 与端口映射方式实现,具体原理下文详解),拥有内网 IP 可以被同一局域网下的其他设备所访问到;

公网 IP : 内网的设备想要访问非同一局域网下的资源则必须通过公网 IP ,公网 IP 是没有经过 NAT 转换的由互联网供应商(ISP)提供的最原始的 IP 地址,每一个公网 IP 都可以直接在互联网中被直接定位到。

一个最简单的例子(以前端开发为例) :

当我们使用 webpack-dev-server 来启动一个 node 项目时,我们除了通过localhost:[端口号]的方式以外,与我们的开发设备处于同一局域网下的设备可以通过内网 IP :[端口号]的方式对我们的项目进行访问,但当我们使用自己的流量或者连接其他非当前开发设备所在局域网的设备使用内网 IP :[端口号]的方式进行进行访问时,则无法访问。

原因:

内网 IP 地址仅在当前局域网下可以被定位并访问到,而当我们想要跨局域网访问时,我们的访问请求则需要先映射为公网 IP 然后访问到另一局域网的公网 IP ,最后由另一局域网的网关将其映射到相应的局域网设备,但我们访问的地址属于局域网中的内网 IP ,因此无法定位到其相应的公网 IP

综上所述,当我们想要让处于其他局域网下的设备访问到我们本地资源,必不可缺的就是公网 IP


公网 IP 的稀有程度

相较于内网 IP ,公网 IP 明显比内网 IP 更加有用,为什么不可以人手一个公网 IP 呢?


IPV4和 IPV6

尽管 IPV6 的概念在几年前已经被提出,但实际的普及程度并没有很高,现在大部分网络用户使用的依旧是 IPV4 的 IP 地址,这也是限制公网 IP 个数的最大原因。

** IPV4:** IPV4 由 32 位二进制数组成,一共有 2^32 个不同的 IPV4 地址

** IPV6**: IPV6 由 128 位二进制数组成,理论上共有 2^128 个不同的 IPV6 地址

由此可见, IPV4地址的个数并不足以满足当前全世界网络用户的人手一个 IP 地址的需求,那么当前的网络为什么可以让这么多用户同时在网络上冲浪呢?


NAT(网络地址转换)技术

网络地址转化技术的核心作用在于实现对公网 IP 地址的复用,即所有的内网主机共用同一个 IP 地址,NAT 的实现方式共有三种:


  • 静态转换:将内网 IP 直接转换为公网 IP 地址,形成一一对应的方式


  • 动态转换:将内网 IP 地址转换为公网 IP 地址,与静态转换不同的是动态转换会在 IP 池中选择空闲 IP 地址进行转换,即每次同一个内网 IP 对应的公网 IP 会发生改变


  • 端口多路复用(PAT 技术):将内网 IP 与公网 IP 的某一端口进行映射,通过公网 IP 的某一端口访问公网

可以看出以上三种形式中端口多路复用(PAT)技术可以最大程度上缓解 IPV4 地址紧张的现状,也是最为广泛使用的实现方式,三种 NAT 实现方式共同点在于:对于内网用户来说自己对应的公网 IP 是不可知的,就好像我们可以知道自己的门牌号但无法知道自己所在的小区,因此无法准确告诉别人我们的具体地址。


内网穿透

在已知了当前内外网工作方式后,我们再来看一看作为程序员常用的技术手段内网穿透

在此之前或许很多人都曾使用过如花生壳、ngrok、frp等方式在没有服务器的情况下将一些服务部署到网络上让别人使用

那么内网穿透的原理究竟是怎么样的呢?


内网穿透原理解析

目前市面上主流的内网穿透工具实现的原理如下:

可见,内网穿透的核心原理在于将外网 IP 地址与内网 IP 地址建立联系,市面上常用的如花生壳工具其核心原理就是依靠一台具有公网 IP 的服务器作为请求的中转站以此来达到从公网访问内网主机的目的。

当我们启动花生壳的服务时,花生壳会将本地配置好的端口和服务器上的端口进行映射,告知服务器请求转发的路径,花生壳的公网服务器则会监听相应端口的请求,当用户访问花生壳提供的 IP 地址时,花生壳的对应 IP 地址的公网主机将会根据访问的端口映射到相应的内网主机,并通过预先配置好的服务端口将请求转发,以达到访问内网主机相应服务的效果。

更多C++后台开发技术点知识内容包括C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,MongoDB,ZK,流媒体,音视频开发,Linux内核,TCP/IP,协程,DPDK多个高级知识点。

C/C++Linux服务器开发高级架构师/C++后台开发架构师​免费学习地址

【文章福利】另外还整理一些C++后台开发架构师 相关学习资料,面试题,教学视频,以及学习路线图,免费分享有需要的可以点击领取


实现内网穿透

花生壳作为一款商业产品,对于配置端口等一系列工作进行了封装,使得用户可以更快捷的使用内网穿透,但我们在了解原理后完全可以通过一些开源的框架以及一台公网服务器实现对应的内网穿透功能,我们以 frp 为例。


如何搭建最简单的 frp 服务

服务端设置(frps.ini):
[common]
bind_port = 7000 //此处填写客户端监听的服务端端口号
vhost_http_port = 8080 //此处填写用户访问的端口号
客户端配置(frpc.ini):
[common]
server_addr = x.x.x.x //此处填写服务端 IP 地址
server_port = 7000 //此处填写服务端配置的bind_port
[web]
type = http //此处规定转发请求的协议类型
local_port = 80 //此处规定本地服务启动的地址
custom_domains = www.example.com //此处可以填写自定义域名(需要在 IP 地址下配置域名解析)

当我们配置完上述的文件后,用户的访问请求将会经过如下的步骤:

用户的请求将会经过域名解析,公网端口的转发以及内网主机的监听三个步骤成功将请求发送到对应的内网服务,当然 frp 相较于花生壳提供了更多的自定义配置项,此处不做详细讲解,有兴趣的读者可以访问:frp中文文档

当我们使用 frp 去配置我们自己的内网穿透服务时,我们可以使用一台服务器为大量的内网主机提供公网访问的功能,以此来实现公网 IP 的复用,其原理与上文提到的 PAT 端口多路复用技术相类似,当我们临时需要使用服务器时,只需要向拥有公网服务器的朋友申请两个闲置端口即可。


frp 核心代码解析

本文以 http 请求为例解析当一个公网请求发送到frp服务器后究竟会经过哪些步骤


frps 初始化

func runServer(cfg config.ServerCommonConf) (err error)
log.InitLog(cfg.LogWay, cfg.LogFile, cfg.LogLevel, cfg.LogMaxDays, cfg.DisableLogColor)
if cfgFile != ""
log.Info("frps uses config file: %s", cfgFile)
else
log.Info("frps uses command line arguments for config")


// !important 核心代码1
svr, err := server.NewService(cfg)
if err != nil
return err

log.Info("frps started successfully")
// !important 核心代码2
svr.Run()
return

在frp/cmd/frps/root.go中


  • 核心代码1: server.NewService() 方法对我们在frps中的配置进行解析,初始化frp服务端
  • 核心代码2: serever.Run() 方法启动frp服务

frpc 初始化

for
// !important 核心代码3
conn, session, err := svr.login()
if err != nil
xl.Warn("login to server failed: %v", err)
// if login_fail_exit is true, just exit this program
// otherwise sleep a while and try again to connect to server
if svr.cfg.LoginFailExit
return err

util.RandomSleep(10*time.Second, 0.9, 1.1)
else
// login success
// !important 核心代码4
ctl := NewControl(svr.ctx, svr.runID, conn, session, svr.cfg, svr.pxyCfgs, svr.visitorCfgs, svr.serverUDPPort, svr.authSetter)
ctl.Run()
svr.ctlMu.Lock()
svr.ctl = ctl
svr.ctlMu.Unlock()
break

在frp/cmd/client/service.go中


  • 核心代码3: for 循环不断去发起和服务端的连接,失败后会再次发起
  • 核心代码4: 连接成功后,客户端会使用连接的信息调用 NewControl()

frpc 和 frps 通信

frps 发起连接

func (pxy *BaseProxy) GetWorkConnFromPool(src, dst net.Addr) (workConn net.Conn, err error)
xl := xlog.FromContextSafe(pxy.ctx)
// try all connections from the pool
for i := 0; i // !important 核心代码5
if workConn, err = pxy.getWorkConnFn(); err != nil
xl.Warn("failed to get work connection: %v", err)
return

xl.Debug("get a new work connection: [%s]", workConn.RemoteAddr().String())
xl.Spawn().AppendPrefix(pxy.GetName())
workConn = frpNet.NewContextConn(pxy.ctx, workConn)
......
// !important 核心代码6
err := msg.WriteMsg(workConn, &msg.StartWorkConn
ProxyName: pxy.GetName(),
SrcAddr: srcAddr,
SrcPort: uint16(srcPort),
DstAddr: dstAddr,
DstPort: uint16(dstPort),
Error: "",
)

在frp/server/proxy.go中


  • 核心代码5: frps从多个连接中通过依次遍历的方式来获取第一个成功获取到的连接
  • 核心代码6:frps通过获取到的连接向 frpc 发出 &msg.StartWorkConn 的消息,告诉frpc建立连接的相应信息

frpc 响应连接

func (pxy *TCPProxy) InWorkConn(conn net.Conn, m *msg.StartWorkConn)
// !important 核心代码7
HandleTCPWorkConnection(pxy.ctx, &pxy.cfg.LocalSvrConf, pxy.proxyPlugin, pxy.cfg.GetBaseInfo(), pxy.limiter,
conn, []byte(pxy.clientCfg.Token), m)

在frp/client/proxy/proxy.go中


  • 核心代码7:frpc接收到frps的信息后发起 TCP 连接

frps发送消息

func (ctl *Control) writer()
xl := ctl.xl
defer func()
if err := recover(); err != nil
xl.Error("panic error: %v", err)
xl.Error(string(debug.Stack()))

()
defer ctl.allShutdown.Start()
defer ctl.writerShutdown.Done()
encWriter, err := crypto.NewWriter(ctl.conn, []byte(ctl.serverCfg.Token))
if err != nil
xl.Error("crypto new writer error: %v", err)
ctl.allShutdown.Start()
return

for
m, ok :&#61; <-ctl.sendCh
if !ok
xl.Info("control writer is closing")
return

// !important 核心代码8
if err :&#61; msg.WriteMsg(encWriter, m); err !&#61; nil
xl.Warn("write message to control connection error: %v", err)
return


在frp/server/control.go中


  • 核心代码8: frps发送信息到 crypto.NewWriter() 创建的 writer 中

frpc 接收和响应

// !important 核心代码9
func (ctl *Control) reader()
xl :&#61; ctl.xl
defer func()
if err :&#61; recover(); err !&#61; nil
xl.Error("panic error: %v", err)
xl.Error(string(debug.Stack()))

()
defer ctl.readerShutdown.Done()
defer close(ctl.closedCh)
encReader :&#61; crypto.NewReader(ctl.conn, []byte(ctl.clientCfg.Token))
for
m, err :&#61; msg.ReadMsg(encReader)
if err !&#61; nil
if err &#61;&#61; io.EOF
xl.Debug("read from control connection EOF")
return

xl.Warn("read error: %v", err)
ctl.conn.Close()
return

ctl.readCh <- m


  • 核心代码9: frpc 读取 frps 转发的信息

到这里&#xff0c;我们的 frps 已经成功将公网中接收到的请求转发到 frpc 相应的端口了&#xff0c;这就是一个最简单的请求通过 frp 进行代理转发的流程。


总结

本文所介绍的内网穿透技术相关的实现方式其实在我们的日常开发生活中有更多的使用场景&#xff0c;当我们深入了解了当前 IP 地址以及内外网的实现方式后&#xff0c;我们不难发现&#xff0c;当我们将内网穿透的图片稍加修改后就成为了我们常用的另一种功能的实现方式(VPN实现原理)&#xff1a;

原文作者&#xff1a;内网穿透你真的了解吗&#xff1f; - 掘金


推荐阅读
  • Linux如何安装Mongodb的详细步骤和注意事项
    本文介绍了Linux如何安装Mongodb的详细步骤和注意事项,同时介绍了Mongodb的特点和优势。Mongodb是一个开源的数据库,适用于各种规模的企业和各类应用程序。它具有灵活的数据模式和高性能的数据读写操作,能够提高企业的敏捷性和可扩展性。文章还提供了Mongodb的下载安装包地址。 ... [详细]
  • Nginx使用(server参数配置)
    本文介绍了Nginx的使用,重点讲解了server参数配置,包括端口号、主机名、根目录等内容。同时,还介绍了Nginx的反向代理功能。 ... [详细]
  • 本文介绍了Python高级网络编程及TCP/IP协议簇的OSI七层模型。首先简单介绍了七层模型的各层及其封装解封装过程。然后讨论了程序开发中涉及到的网络通信内容,主要包括TCP协议、UDP协议和IPV4协议。最后还介绍了socket编程、聊天socket实现、远程执行命令、上传文件、socketserver及其源码分析等相关内容。 ... [详细]
  • Metasploit攻击渗透实践
    本文介绍了Metasploit攻击渗透实践的内容和要求,包括主动攻击、针对浏览器和客户端的攻击,以及成功应用辅助模块的实践过程。其中涉及使用Hydra在不知道密码的情况下攻击metsploit2靶机获取密码,以及攻击浏览器中的tomcat服务的具体步骤。同时还讲解了爆破密码的方法和设置攻击目标主机的相关参数。 ... [详细]
  • Voicewo在线语音识别转换jQuery插件的特点和示例
    本文介绍了一款名为Voicewo的在线语音识别转换jQuery插件,该插件具有快速、架构、风格、扩展和兼容等特点,适合在互联网应用中使用。同时还提供了一个快速示例供开发人员参考。 ... [详细]
  • 本文介绍了在Mac上搭建php环境后无法使用localhost连接mysql的问题,并通过将localhost替换为127.0.0.1或本机IP解决了该问题。文章解释了localhost和127.0.0.1的区别,指出了使用socket方式连接导致连接失败的原因。此外,还提供了相关链接供读者深入了解。 ... [详细]
  • 本文介绍了计算机网络的定义和通信流程,包括客户端编译文件、二进制转换、三层路由设备等。同时,还介绍了计算机网络中常用的关键词,如MAC地址和IP地址。 ... [详细]
  • 本文介绍了通过ABAP开发往外网发邮件的需求,并提供了配置和代码整理的资料。其中包括了配置SAP邮件服务器的步骤和ABAP写发送邮件代码的过程。通过RZ10配置参数和icm/server_port_1的设定,可以实现向Sap User和外部邮件发送邮件的功能。希望对需要的开发人员有帮助。摘要长度:184字。 ... [详细]
  • 本文介绍了在mac环境下使用nginx配置nodejs代理服务器的步骤,包括安装nginx、创建目录和文件、配置代理的域名和日志记录等。 ... [详细]
  • 本文介绍了在Linux下安装和配置Kafka的方法,包括安装JDK、下载和解压Kafka、配置Kafka的参数,以及配置Kafka的日志目录、服务器IP和日志存放路径等。同时还提供了单机配置部署的方法和zookeeper地址和端口的配置。通过实操成功的案例,帮助读者快速完成Kafka的安装和配置。 ... [详细]
  • 本文讨论了在使用PHP cURL发送POST请求时,请求体在node.js中没有定义的问题。作者尝试了多种解决方案,但仍然无法解决该问题。同时提供了当前PHP代码示例。 ... [详细]
  • 本文介绍了Hyperledger Fabric外部链码构建与运行的相关知识,包括在Hyperledger Fabric 2.0版本之前链码构建和运行的困难性,外部构建模式的实现原理以及外部构建和运行API的使用方法。通过本文的介绍,读者可以了解到如何利用外部构建和运行的方式来实现链码的构建和运行,并且不再受限于特定的语言和部署环境。 ... [详细]
  • 本文介绍了如何使用iptables添加非对称的NAT规则段,以实现内网穿透和端口转发的功能。通过查阅相关文章,得出了解决方案,即当匹配的端口在映射端口的区间内时,可以成功进行端口转发。详细的操作步骤和命令示例也在文章中给出。 ... [详细]
  • 本文介绍了Web学习历程记录中关于Tomcat的基本概念和配置。首先解释了Web静态Web资源和动态Web资源的概念,以及C/S架构和B/S架构的区别。然后介绍了常见的Web服务器,包括Weblogic、WebSphere和Tomcat。接着详细讲解了Tomcat的虚拟主机、web应用和虚拟路径映射的概念和配置过程。最后简要介绍了http协议的作用。本文内容详实,适合初学者了解Tomcat的基础知识。 ... [详细]
  • 如何在服务器主机上实现文件共享的方法和工具
    本文介绍了在服务器主机上实现文件共享的方法和工具,包括Linux主机和Windows主机的文件传输方式,Web运维和FTP/SFTP客户端运维两种方式,以及使用WinSCP工具将文件上传至Linux云服务器的操作方法。此外,还介绍了在迁移过程中需要安装迁移Agent并输入目的端服务器所在华为云的AK/SK,以及主机迁移服务会收集的源端服务器信息。 ... [详细]
author-avatar
詹慧君874
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有